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Long-wave and short-wave asymptotics in nonlinear dispersive systems
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In this paper we study the interplay between short- and long-space scales in the context of conservative
dispersive systems. We consider model systemglinl) dimensions that admit both long- and short-
wavelength solutions in the linear regime. A nonlinear analysis of these systems is constructed, making use of
multiscale expansions. We show that the equations governing the lowest order involve only short-wave prop-
erties and that the long-wave effects to leading order are determined by a secularity elimination procedure.
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I. INTRODUCTION scaling hypothesis about the typical amplitude of the fields.
This will be discussed in Sec. I, where we also derive results
In this paper we will consider conservative dispersive sysconcerning different nonlinear regimes. We will find that the
tems in(1+1) dimensions which exhibit the property of ad- lowest order equation involves only short-wave variables,
mitting, in the linear regimeboth long- and short-wave so- leaving the long-wave dynamics undetermined. However,
lutions. Admissibility means in our context that, when thewhen going to the next order, secularities appear, demanding
nonlinear terms of a given system of partial differential equathus a secularity elimination procedure, which can be
tions are dropped, and when we look to the dispersion relaachieved if particular solutions for the lowest order are con-
tion of the resulting system by seeking solutions of the formsidered. As a result of this procedure, we will find that the
dependence on the long-wave variable is fixed in the lowest-

u(x,t)ec expi[kx—w(k)t], (1) order solution of the perturbative expansion. In Sec. Ill we

o . summarize our results.
we will find that w(k) is bounded fork—0 as well as for In order to have a clear understanding of the perturbative
k—co. More specifically, we will suppose that expansions we will settle our treatment on an explicit equa-

tion satisfying the above hypothedi®), (3). We will con-

i — 2 4
l'mow(k)/k_AOJrAzk ALK 2 sider that our unperturbed system is described by the
- Benjamim-Bona-MahonyBBM) equation[5]
B, B — — =
lim w(k)/k=Bg+ — +—+- - -. 3) Ut Uy = BU UL — Uy = 0. (4)
k—s o0 k2 k4

The purpose of considering this equation is not the study of
Thus, for this kind of system, long and short waves evolvelts propertiesper sg but to take it as a representative of the
on the same time scale. Before proceeding, let us discuss tl§2ass of equations satisfying conditit),(3). Indeed for Eq.
scope of this assumption. First of all, we have introduced4).
constants?, and B in the above relations. We could have,
obviously two different constants. Such a difference between
constants could be later scaled away. Thus the results we are
going to derive are valid for systems whose dispersion rela-
tions are bounded in the above limits. A prominent systenEquation(4) represents in our case a toy model, making the
satisfying these assumptions is the propagation of eletromagyroblem tractable. By the derivations that follow, it is clear
netic waves in saturated ferrit¢s]. Other examples come that we are not going to use any peculiar property of the
from hydrodynamics, such as those described by th&BM equation, besides the dispersion relati@). In this
Camassa-Holm equatiof2] or the (nonintegrable Bouss-  sense, our results should hold approximatively even in cases
inesq systeni3]. The purpose of this paper is to establish awhere the dispersion relation is not known exactly, but the
nonlinear theory for these systems. In particular, does norbehavior given by Eq92),(3) can be ascertained.
linearity affect differently short- and long-space scales? To We note that our approach distinguishes itself from others
tackle the problem we will resort to perturbative expansionswhich are found in the literature in the field: the theory of
By means of multiple-scale perturbative methgdlswe can  nonlinear resonant wave-wave interaction and the theory on
naturally deal with different space scales, by introducingnonlinear interaction between a long wave and a train of
scaled variables representing short- and long-space scaleshort waves. The first case is possible if the linear dispersion
As to time variables, only long-time variables will be relation admits the three or the four-wave interaction pro-
needed, a consequence of E@, (3). Furthermore, we need cess. This case has been investigated in R&fs3]. The sec-
to fix the relative strength of the nonlinearity by making ond case happens when the dispersion relation is such that

w(k)=

k+1/k’ ©
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the phase velocity of the long-wave component coincides O =k +ké+wim+wyrz+®, (11)
with the group velocity of the short wav8enney’s theory,
The earliest studies along this line were made in Refswith w;=1/4k,, w3=1/163—k/4k? and ® a new phase

[9-11 and later in Ref[12]. depending only onrs and higher-order time variables. The
appearance of a terms coming from secularity elimination
Il. BASIC PERTURBATIVE EXPANSIONS corresponds to renormalization of the wave speed. The term

, ) . k, ¢ introduces a redefinition of the wave number due to long-
Asymptotic analysis based on multiple-scale methods, ;e effects.

makes use of scaled variables, introducing order of magni- The calculation may be continued to next orders. This
tude relations between space, time, and amplitude variableaiveS further corrections t@:

By fixing different relations, we define different perturbative

expansions. In the present case, this goes as follows. To con- O =kl +ké+ w1+ w3+ wsTs+ D, (12)
sider long space-scales we must introduce the varigble

=eX, Wheree<1, as is usual in long wavelength perturba- with w5=1/64k§+ k|2/4k§—3(k|/16k‘s‘).

tive expansiong13]. To be able to consider short waves

concomitantly a variable related to short-space scales is B N=2
needed. In view of Eqs(2),(3), the natural choice ig ) .
=¢e 1, as has already been used in Rdf]. As for time The N=2 case corresponds to a weaker nonlinearity. In-
variables, and in order to treat higher order effdds], we deed the resulting perturbative expansion is made of linear
introduce 7, = et, 3= €3, 7s=€>t, ... . We now suppose equations. Nonetheless, the effects are worth comparing with
thatu(x,t) is a function only of these scaled variables. Thisthe N=0 case. The lowest order equation is
implies the following relations:
p g Uo,=Uo,,, » (13
Ix=€dg+e 1d,, (6)
which may be integrated once i yielding
h=€d. +€d,_+ed_+---. (7)
Lo e g, =Uo, (14)
71
We will suppose thati can be written as an expansion of the
form which is just the linear part of Eq9). Thus, as lowest order
equation we have again a purely short-wave one. we take
u=eN(ug+ e?up+ eyt ), (8)  again a particular solution for the lowest order, in this case
whereN is a constant to be chosen. It fixes the relation be- Ug=Ae’+A*e™ 'Y (15

tween the longness/shortness parameters and the amplitude _ . _
scale. It turns out that the interesting cases\sre0,2. Nega- Where §=Kk{—(1/ks) 71. A is an amplitude which may de-

tive N would result in too strong coupling regime, and with a pend on¢, 73, 7s, ..., andwhere the long-wave effects to
largerN nothing really new appears with respect to the prethe lowest order are to appear. We will again proceed to
vious cases. Let us now separately treat the chise8,2. compute the next order and performa secularity elimination
procedure. The results can be summarized as folldvis to
A N=0 satisfy a secularity elimination condition of the form:
The leading order equation is a purely short-wave equa- 1 |
tion, first derived in Ref[14], which reads A~ PAg:FA' (16)
S S
Uo,, =Uo— 3u?. (9) .
! If we introduceA=Be"ks)7s, whereB is allowed to depend
Let us now take a particular solution to this equation,0oné, 73, 7s, ..., weobtain the following equation foB:
namely,
1
1 1 B~ 2B¢=0, (17)
Up==sech| kl+ —— 71+ ¢|. (10) Ks
2 4k,

_ . o which implies that B=B(#,75, ...), where #5=¢
Here, ks is a constant and is a phase which is allowed to  +(1/k?2)r;. B is otherwise undetermined, and we will need
depend oné, 73, 75, ... . Expressior{10) is a solution to o compute the next order in perturbative expansion. Notice

the short-wave equatiof®) but long-wave effects are al- nat py definingd;= 6+ (1/k3) 75, the expression fou, be-
lowed to appear in the phase. To determine these effects wgmes

must calculate the next orders and proceed to eliminate secu-

lar terms, a procedure that, and each order, fixes the depen- up=Be'%+B*e "%, (18)
dence of¢ on & and the higher order time variables. This is

a straightforward procedure, whose details we will not ad-The same velocity renormalization effect as in the 0 is
dress here. Callin@ the argument of the setlin Eq. (10, present here. The computation now follows straightfor-
we obtain that wardly. The next-order secularity elimination condition is
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Let us now study some solutions to this equation, in orde
to obtain the effects of the long-space spaces, containgd in
First let us put

[I'his result represents the followingy must be a solution of

the short-wave equation E¢L3), but long-wave effects re-
appear when secular terms are eliminated in the perturbative
expansion. These long-wave effects represent a redefinition
of the wave numbers, a renormalization of the velocity and,
finally, a modulation of the amplitude depending of slow
space and time scales.

B=F(7,75)e'", (20

where Q) =k n+\7s5, F is real,\ is a constant, still to be
determined, depending dq andk,. Equation(20) implies
two equations, coming from the real and imaginary parts of 1. FINAL REMARKS
Eqg. (19:
a-(19 We have considered in this article(a+1)-dimensional
ok 3 system described by equations admitting a dispersion rela-
__( ! ) o (21)  tion displaying the symmetrk—1/k. Thus, from a linear
point of view, both short and long waves are well behaved.
Considering the full nonlinear equations and admitting the
fields to depend concomitantly on long-wave and short-wave
F. (22) variables, we have constructed a perturbative expansion
valid over long times. The lowest order equation depends
only on short-wave space variabled (and the dependence
A particular solution to this system can be verified to be  on the long-space scal&)(is fixed only by considering the
higher order effects in a properly constructed perturbative
series, where secular terms are eliminated order by order.

5 DEE
kS kS

\F 1(F K2F) lp 8ps 3K
- (F, K- —F-Fi
K3 K Ks ké

S

F= K tanh(k; n+Vs), (23)  The results can be summarized as follows: if the typical am-
V3ks plitude is of O(1) there exists a solitary wave depending
simultaneously or¢ and , whose velocity is renormalized
1 3k 3k? order by order. On the other hand, if the typical amplitude is
A=— E FJFF , (24) small, of O(€?), then the lowest order equation is linear, and
s s s again independent of. With secular effects taken into ac-

3 4 ) , count, the picture emerges of a periodic wave whose phase
where V= —(2k  /ks+3/ks). Summing up all of this, we genends linearly o4 and¢, with a order-by-order renormal-

write the expression fou, ized velocity and with a modulated amplitude, effective over
long-space scales.
K, 1
Uo= 3k tan{ k|< §+FT3 +Vrs|e'%+cc., (29 ACKNOWLEDGMENT
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