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Long-wave and short-wave asymptotics in nonlinear dispersive systems
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In this paper we study the interplay between short- and long-space scales in the context of conservative
dispersive systems. We consider model systems in~111! dimensions that admit both long- and short-
wavelength solutions in the linear regime. A nonlinear analysis of these systems is constructed, making use of
multiscale expansions. We show that the equations governing the lowest order involve only short-wave prop-
erties and that the long-wave effects to leading order are determined by a secularity elimination procedure.
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I. INTRODUCTION

In this paper we will consider conservative dispersive s
tems in~111! dimensions which exhibit the property of ad
mitting, in the linear regime,both long- and short-wave so
lutions. Admissibility means in our context that, when t
nonlinear terms of a given system of partial differential eq
tions are dropped, and when we look to the dispersion r
tion of the resulting system by seeking solutions of the fo

u~x,t !} expi @kx2v~k!t#, ~1!

we will find that v(k) is bounded fork˜0 as well as for
k˜`. More specifically, we will suppose that

lim
k˜0

v~k!/k5A01A2k21A4k41•••, ~2!

lim
k˜`

v~k!/k5B01
B2

k2
1

B4

k4
1•••. ~3!

Thus, for this kind of system, long and short waves evo
on the same time scale. Before proceeding, let us discus
scope of this assumption. First of all, we have introduc
constantsA0 andB0 in the above relations. We could hav
obviously two different constants. Such a difference betw
constants could be later scaled away. Thus the results we
going to derive are valid for systems whose dispersion r
tions are bounded in the above limits. A prominent syst
satisfying these assumptions is the propagation of eletrom
netic waves in saturated ferrites@1#. Other examples come
from hydrodynamics, such as those described by
Camassa-Holm equation@2# or the ~nonintegrable! Bouss-
inesq system@3#. The purpose of this paper is to establish
nonlinear theory for these systems. In particular, does n
linearity affect differently short- and long-space scales?
tackle the problem we will resort to perturbative expansio
By means of multiple-scale perturbative methods@4# we can
naturally deal with different space scales, by introduc
scaled variables representing short- and long-space sc
As to time variables, only long-time variables will b
needed, a consequence of Eqs.~2!, ~3!. Furthermore, we need
to fix the relative strength of the nonlinearity by makin
PRE 601063-651X/99/60~2!/2418~3!/$15.00
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scaling hypothesis about the typical amplitude of the fiel
This will be discussed in Sec. II, where we also derive res
concerning different nonlinear regimes. We will find that t
lowest order equation involves only short-wave variabl
leaving the long-wave dynamics undetermined. Howev
when going to the next order, secularities appear, deman
thus a secularity elimination procedure, which can
achieved if particular solutions for the lowest order are co
sidered. As a result of this procedure, we will find that t
dependence on the long-wave variable is fixed in the low
order solution of the perturbative expansion. In Sec. III
summarize our results.

In order to have a clear understanding of the perturba
expansions we will settle our treatment on an explicit eq
tion satisfying the above hypothesis~2!, ~3!. We will con-
sider that our unperturbed system is described by
Benjamim-Bona-Mahony~BBM! equation@5#

ut1ux26uux2uxxt50. ~4!

The purpose of considering this equation is not the study
its propertiesper se, but to take it as a representative of th
class of equations satisfying condition~2!,~3!. Indeed for Eq.
~4!,

v~k!5
1

k11/k
. ~5!

Equation~4! represents in our case a toy model, making
problem tractable. By the derivations that follow, it is cle
that we are not going to use any peculiar property of
BBM equation, besides the dispersion relation~5!. In this
sense, our results should hold approximatively even in ca
where the dispersion relation is not known exactly, but
behavior given by Eqs.~2!,~3! can be ascertained.

We note that our approach distinguishes itself from oth
which are found in the literature in the field: the theory
nonlinear resonant wave-wave interaction and the theory
nonlinear interaction between a long wave and a train
short waves. The first case is possible if the linear dispers
relation admits the three or the four-wave interaction p
cess. This case has been investigated in Refs.@6–8#.The sec-
ond case happens when the dispersion relation is such
2418 © 1999 The American Physical Society



de

f

d
gn
le
e

co
le
a-
s

s

is

e

be
litu

a
re

ua

n

o

-
s
ec
pe
is
d

e

erm
g-

his

In-
ear
with

r
ake
se

-
o

to
ion

d
tice

or-

PRE 60 2419BRIEF REPORTS
the phase velocity of the long-wave component coinci
with the group velocity of the short wave~Benney’s theory!.
The earliest studies along this line were made in Re
@9–11# and later in Ref.@12#.

II. BASIC PERTURBATIVE EXPANSIONS

Asymptotic analysis based on multiple-scale metho
makes use of scaled variables, introducing order of ma
tude relations between space, time, and amplitude variab
By fixing different relations, we define different perturbativ
expansions. In the present case, this goes as follows. To
sider long space-scales we must introduce the variabj
5ex, wheree!1, as is usual in long wavelength perturb
tive expansions@13#. To be able to consider short wave
concomitantly a variable related to short-space scale
needed. In view of Eqs.~2!,~3!, the natural choice isz
5e21x, as has already been used in Ref.@14#. As for time
variables, and in order to treat higher order effects@15#, we
introducet15et, t35e3t, t55e5t, . . . . We now suppose
that u(x,t) is a function only of these scaled variables. Th
implies the following relations:

]x5e]j1e21]z , ~6!

] t5e]t1
1e3]t3

1e5]t5
1•••. ~7!

We will suppose thatu can be written as an expansion of th
form

u5eN~u01e2u21e4u41••• !, ~8!

whereN is a constant to be chosen. It fixes the relation
tween the longness/shortness parameters and the amp
scale. It turns out that the interesting cases areN50,2. Nega-
tive N would result in too strong coupling regime, and with
largerN nothing really new appears with respect to the p
vious cases. Let us now separately treat the casesN50,2.

A. N50

The leading order equation is a purely short-wave eq
tion, first derived in Ref.@14#, which reads

u0zt1
5u023u0

2 . ~9!

Let us now take a particular solution to this equatio
namely,

u05
1

2
sech2Fksz1

1

4ks
t11fG . ~10!

Here,ks is a constant andf is a phase which is allowed t
depend onj, t3 , t5 , . . . . Expression~10! is a solution to
the short-wave equation~9! but long-wave effects are al
lowed to appear in the phase. To determine these effect
must calculate the next orders and proceed to eliminate s
lar terms, a procedure that, and each order, fixes the de
dence off on j and the higher order time variables. This
a straightforward procedure, whose details we will not a
dress here. CallingQ the argument of the sech2 in Eq. ~10!,
we obtain that
s

s.

s
i-
s.

n-

is

-
de

-

-

,

we
u-
n-

-

Q5ksz1klj1v1t11v3t31F, ~11!

with v151/4ks , v351/16ks
32kl /4ks

2 and F a new phase
depending only ont5 and higher-order time variables. Th
appearance of a termv3 coming from secularity elimination
corresponds to renormalization of the wave speed. The t
klj introduces a redefinition of the wave number due to lon
wave effects.

The calculation may be continued to next orders. T
gives further corrections toQ:

Q5ksz1klj1v1t11v3t31v5t51F̄, ~12!

with v551/64ks
51kl

2/4ks
323(kl /16ks

4 !.

B. N52

The N52 case corresponds to a weaker nonlinearity.
deed the resulting perturbative expansion is made of lin
equations. Nonetheless, the effects are worth comparing
the N50 case. The lowest order equation is

u0z
5u0zzt1

, ~13!

which may be integrated once inz, yielding

u0zt1
5u0 , ~14!

which is just the linear part of Eq.~9!. Thus, as lowest orde
equation we have again a purely short-wave one. we t
again a particular solution for the lowest order, in this ca

u05Aeıu1A* e2ıu, ~15!

whereu5ksz2(1/ks)t1 . A is an amplitude which may de
pend onj, t3 , t5 , . . . , andwhere the long-wave effects t
the lowest order are to appear. We will again proceed
compute the next order and performa secularity eliminat
procedure. The results can be summarized as follows.A is to
satisfy a secularity elimination condition of the form:

At3
2

1

ks
2

Aj5
ı

ks
3

A. ~16!

If we introduceA5Be(ı/ks
2)t3, whereB is allowed to depend

on j, t3 , t5 , . . . , weobtain the following equation forB:

Bt3
2

1

ks
2

Bj50, ~17!

which implies that B5B(h,t5 , . . . ), where h5j
1(1/ks

2)t3 . B is otherwise undetermined, and we will nee
to compute the next order in perturbative expansion. No
that, by definingu35u1(1/ks

3)t3, the expression foru0 be-
comes

u05Beıu31B* e2ıu3. ~18!

The same velocity renormalization effect as in theN50 is
present here. The computation now follows straightf
wardly. The next-order secularity elimination condition is
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Bt5
5ıF 1

ks
3

Bhh2
1

ks
5

B2
6

ks
BuBu2G2

3

ks
4

Bh . ~19!

Let us now study some solutions to this equation, in or
to obtain the effects of the long-space spaces, containedh.
First let us put

B5F~h,t5!eıV, ~20!

whereV5klh1lt5 , F is real, l is a constant, still to be
determined, depending onks and kl . Equation~20! implies
two equations, coming from the real and imaginary parts
Eq. ~19!:

Ft5
52S 2kl

ks
3

1
3

ks
4D Fh , ~21!

lF5
1

ks
3 ~Fhh2kl

2F !2
1

ks
5

F2
6

ks
F32

3kl

ks
4

F. ~22!

A particular solution to this system can be verified to be

F5
kl

A3ks

tanh~klh1Vt5!, ~23!

l52S 1

ks
5

1
3kl

ks
4

1
3kl

2

ks
3 D , ~24!

where V52(2kl /ks
313/ks

4). Summing up all of this, we
write the expression foru0

u05
kl

A3ks

tanhF klS j1
1

ks
2
t3D 1Vt5Geıu51c.c., ~25!

where
n

-

R

r

f

u55ksz1klj2
1

ks
t11S 1

ks
3

1
kl

ks
2D t32S 1

ks
5

1
3kl

ks
4

1
3kl

2

ks
3 D .

~26!

This result represents the following:u0 must be a solution of
the short-wave equation Eq.~13!, but long-wave effects re-
appear when secular terms are eliminated in the perturba
expansion. These long-wave effects represent a redefin
of the wave numbers, a renormalization of the velocity a
finally, a modulation of the amplitude depending of slo
space and time scales.

III. FINAL REMARKS

We have considered in this article a~111!-dimensional
system described by equations admitting a dispersion r
tion displaying the symmetryk˜1/k. Thus, from a linear
point of view, both short and long waves are well behav
Considering the full nonlinear equations and admitting
fields to depend concomitantly on long-wave and short-w
variables, we have constructed a perturbative expan
valid over long times. The lowest order equation depen
only on short-wave space variables (z), and the dependenc
on the long-space scale (j) is fixed only by considering the
higher order effects in a properly constructed perturbat
series, where secular terms are eliminated order by or
The results can be summarized as follows: if the typical a
plitude is ofO(1) there exists a solitary wave dependin
simultaneously onj and z, whose velocity is renormalized
order by order. On the other hand, if the typical amplitude
small, ofO(e2), then the lowest order equation is linear, a
again independent ofj. With secular effects taken into ac
count, the picture emerges of a periodic wave whose ph
depends linearly onj andz, with a order-by-order renormal
ized velocity and with a modulated amplitude, effective ov
long-space scales.
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